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Due to the encephalic tissues are highly irregular, three-dimensional (3D) modeling of brain always leads to compli-

cated computing. In this paper, we explore an efficient method for brain surface reconstruction from magnetic reso-

nance (MR) images of head, which is helpful to surgery planning and tumor localization. A heuristic algorithm is pro-

posed for surface triangle mesh generation with preserved features, and the diagonal length is regarded as the heuristic 

information to optimize the shape of triangle. The experimental results show that our approach not only reduces the 

computational complexity, but also completes 3D visualization with good quality. 
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The three-dimensional (3D) reconstruction of brain struc-

tures from magnetic resonance (MR) images is a crucial 

work in clinical diagnosis, surgical planning and the 

analysis of neuroanatomical variability. From a set of 

parallel slices generated from MR image, it is possible to 

reconstruct and display the external surface of the organ 

by using the triangle meshes of the geometric modeling. 

Irregular triangle meshes have become more and more 

popular, and are frequently used in many different areas, 

such as computer graphics, 3D modeling, computer games 

and movie production. Many algorithms for solving the 

triangulation problem have been proposed[1,2]. A well-

known grid-based method is marching cubes[3,4], which is 

the isosurface extraction generated on local criteria. 

Delaunay triangulation is another widely used algorithm 

in computational geometry[5,6]. Recently, some researchers 

try to use vector machine based method[7], which trans-

forms an original 3D object space into a high dimensional 

feature space, and it shows better result than the cube 

based methods, but its accuracy depends on the training 

data set processing. The general cube based method of 

these triangle meshes is to find a polyhedral surface from 

a set of vertices arbitrarily distributed in space, which is 

complicated. However, if the problem is limited to recons-

tructing a surface from tomographic slices, such as the 

sequence MR images, the particular structure of such data 

will greatly reduce the complexity of reconstruction, 

because the vertices dataset consists of the set of contour 

points of all slices.  

In this paper, triangle meshes are applied to construct 

3D model, since their conceptual simplicity allows more 

flexible and highly efficient processing. We design a method 

which allows automatical 3D triangle mesh generation for 

MR slices by applying heuristic information as local 

decision criterion. The external surface is approximated 

by linking each set of contours from two consecutive 

slices with triangular patches, thus forming the 3D 

approximation, and the consequent use of triangle meshes 

as surface representation avoids error-prone conversions. 

This idea is similar to finite element analysis[8], in which 

the construction model is typically derived from the 

extraction of triangular surface meshes and these meshes 

should satisfy the requirements of triangle quality and 

accuracy.  

The mesh surface should cover a specified domain. The 

size of triangles should be neither smaller than necessary 

nor larger than desired, and  the angles of triangles should 

be proper. 

A triangle surface S consists of a geometric component 

and a topological component: 

S={ε, v},                                                                        (1) 

where the topological component is represented by a set 

of vertices 

v={v1, v2, � , vn},                                                        (2) 

and the geometric component specifies the connectivity 

of the meshes in terms of the edges of the respective 

graph, 

ε={e1, e2, � , eE},   ei= v×v.                                         (3) 

Each vertex vi 
has its 3D coordinates of (xi, yi, zi)∈R

3. 
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To construct 3D model based on the MR image 

tomographic slices, it is crucial to obtain the object’s 

contours. We use the image segmentation method to 

divide the meaningful region, such as the head and brain 

organizations. Medical image segmentation is a challenging 

task in many medical applications, such as surgical planning 

and abnormality detection. There are lots of methods for 

automatic and semi-automatic image segmentation, and here 

we use the gradient vector flow (GVF) snake algorithm 

proposed by Xu et al[9] to obtain the brain contours extracted 

from the de-noised MR images.  

In the GVF snake algorithm, external force is defined 

by a concept of GVF as v(x,y)=(u(x,y), v(x,y)). The 

solution of the GVF deformable models can be found by 

the iteration equation: 

( , ) ( , ) ( , )
t

X s t X s t X s t Vα β′′ ′′′′= − + ,                         (4) 

where X(s,t)=(x(s,t), y(s,t)) represents the deformable 

models, and V can be obtained by minimizing the energy 

equation: 
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We program the edge detecting method to get the data 

of each contour. Put the contours in sequence as the order 

of tomographic slice number, which can be assigned as 

the z-axis. Then, the adjustable step sampling is applied to 

each contour to get the node that can be processed in 

triangle meshes. We save the data and put them into a 3D 

data set for the next mesh generation. 

Triangle mesh is practically constrained by some fea-

ture nodes. We divide these feature nodes into two types, 

which are the characteristic points located in severe cur-

vature places and the constraint points corresponding to 

the electrode position.  

The characteristic points represent the MR image con-

tour feature of each slice, such as the nose tip on one’s face. 

If the node is selected in accordance with a fixed span, it 

will lose some feature points which contain the characteris-

tics of model information. Suppose yi-1, yi and yi+1 are any 

three adjacent points in contour z , the feature points
 
yi can 

be found through computing the slope of neighboring 

points which satisfy the formula of Ki,i-1×Ki,i+1<0, where
 

Ki,i-1 and Ki,i+1 are the slopes of lines yiyi-1and yiyi+1. 

Another type of feature nodes is the constraint points 

which are related to image registration. The individual 

head and brain morphology obtained by MR image is not 

only an essential aspect of the functional localization of 

brain activity based on multi-channel electroencephalo-

graphy (EEG), but also is an important issue electrocorti-

cographic (ECoG) research[10]. In order to be able to use 

the EEG (or ECoG) with high spatial resolution for accu-

rate brain function mapping and neurophysiology studies, 

the exact location of the electrodes on the head (or brain) 

surface should be known. 

There are many matching techniques with different ac-

curacies for the registration of EEG (or ECoG) and MR 

image data. These approaches make the transformation of 

electrode positions and MR image data into a single co-

ordinate system, which allow a more realistic head model 

for the reconstruction of electric sources and the localiza-

tion and validation results in relation to morphological 

structures. We do not discuss these methods in this paper, 

since we only use the matching results as the constraint 

nodes for triangle mesh. 

From above, the feature nodes can be achieved and saved 

in the data set as a part of the sampling nodes. Then the 

sampling of the contour points is based on an adaptive step 

which can be adjusted by the surface curvature. Vertex den-

sity has to be locally adapted to the surface curvature, i.e., 

the flat areas are sparsely sampled, while the sampling den-

sity in detailed regions is sufficiently higher. Tailor expan-

sion reveals that the approximation error is of the order 

O(h2), where h denotes the maximum edge length. Hence, 

the approximation error of a triangle mesh is inversely pro-

portional to the number of its patches. 

Now, our problem is to reconstruct a surface from MR 

tomographic slices. This surface structure of the data can 

be exploited by a heuristic strategy, and we call it as short 

diagonal method which is developed based on the 

principle proposed in Ref.[11]. The heuristic information 

constrains the shape of the patch similar to equilateral 

triangle, which can deduce the approximation error in the 

process of reconstruction for MR image. The schematic 

diagram of short diagonal method is shown in Fig.1. 
 

 

Fig.1 The schematic diagram of short diagonal method 
 
Let z1, z2, …, zk 

be the sequence of ordered contour 

section levels. We consider the contour Q
 
at level zk-1 

and 

the contour P at the adjacent level zk. Suppose Pi with 

1≤i≤M is the sequence of points defining contour P, and 

Qj with 1≤j≤N is the sequence of points defining contour 

Q, which are ordered in a counterclockwise direction. 

The mesh of triangular patches linking P and Q can be 

achieved by using the short diagonal rule. Suppose Pi is 

any point in P, and then
 
Qj is the point in Q which has the 

shortest length to Pi. Other sampling nodes, such as Pi+1 

and Qj+1, are obtained by dividing P and Q by the length 

of L(PiQj). If the diagonal lengths satisfy that 

L(PiQj+1)<L(Pi+1Qj),  connect Pi with Qj+1, so the triangle 

is QjPiQj+1. Otherwise, connect Pi+1 with Qj, and then  the 

triangle is QjPiPi+1. 

According to the short diagonal rule, once the first node 

is set on one contour, the other first nodes on neighbor 

contours are fixed. These first nodes of adjacent contours 

are formed to a line, which we call as the baseline of the 

first triangle. In the process of sampling, the saved 
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feature points should be sampled as mesh nodes to ensure 

the curvature characteristics and the constraint points are 

preserved. The 3D surface reconstruction is processed by 

meshing a series of image contours for the corresponding 

spatial geometry structure. The algorithm for triangle 

mesh with preserved feature can be decomposed into 

three steps as follows. Firstly, initialize the uniformed 

contour slices to find the feature nodes. The characteristic 

points are achieved by computing the slope K, and the 

constraint points (electrode positions) are achieved by 

image registration method. Secondly, sampling from the 

data set (xi, yi, zi) ∈ R
3, set the contour sampling step 

(around a fixed step) according to the distance of adjacent 

feature points, and the sampling step may be several 

different values under the condition of more than two 

constrained points. Repeat the above process, and the 

mesh data matrix is achieved for each contour. Thirdly, 

use the short diagonal method to complete  the 3D 

triangle mesh. A global link between contours is per-

formed by linking each node of the contour z to the 

nearest node of the contour z+1. The diagonal length is as 

the heuristic information to the triangular mesh. 

This algorithm offers mathematical guarantees that mesh 

constraints and feature nodes can be met. The resulting 

mesh is shaped very well, and Fig.2 shows the example 

for the adjacent four contours of brain slices. We can see 

the problem is limited to the triangulation problem 

between each pair of consecutive slices. 3D reconstruction 

surface is composed by piecewise linear surfaces, and the 

set of surface vertices consists of the set of contour points 

of each slice.  
 

 

Fig.2 Mesh results for adjacent four contours of brain 

slices 
 

We perform a series of experiments based on real MR 

images to evaluate the proposed 3D triangulation mesh 

model. We got the head MR images from Tianjin First 

Center Hospital in China, including 51 head tomography 

slices of one person, and only 21 slices are shown in Fig.3, 

where the image size of each slice is 128×128. Using the 

GVF snake algorithm, the brain MR image slices are 

successfully segmented from the original head MR images, 

and 45 brain MR images are achieved. Fig.4 shows the 

brain slice sequence corresponding to Fig.3. The contours 

of each slice of head and brain are obtained through edge 

detecting, then we can have the 3D dataset for the next 

mesh by stacking these slices data in accordance with the 

sequence number. The visualizations of head and brain 

point cloud data are shown in Fig.5. 

 

Fig.3 21 head MR slices got from hospital 
 

 

Fig.4 Brain slices extracted from the head MR image by 

the GVF snake algorithm 

 

   
(a) 

 
(b) 

Fig.5 3D point cloud data of (a) head and (b) brain 

 

Using the short diagonal method for generating mesh 

patches, we get 385 nodes and 766 triangular patches for 

the brain, and 402 nodes and 800 triangular patches for 

the head. The algorithm is heuristic with short diagonal, 

and feature points are ensured as vertices in the meshing 

process. The head reconstruction result with feature 

points is shown in Fig.6(a), and it can be seen that the 
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generated triangles are almost equilateral. The nodes in 

bold represent the feature points, and there are two types 

of feature points. The bold nodes near nose are the 

characteristic nodes located in severe curvature places, 

and those on the top are the constraint nodes corres-

ponding to the electrode position. Fig.6(b) and (c) show 

the brain mesh result and the visualization of its 3D 

reconstruction. We can see that the mesh quality is high 

enough to build a satisfactory brain 3D model. 

 

 

(a) Head mesh result with feature points        (b) Brain mesh result 

       

(c) Visualization of brain 3D reconstruction 

Fig.6 The mesh results and 3D visualization 

 

There are many measures to evaluate the element 

quality[12]. One commonly used mesh quality measure is 

using the ratio: 

in

out

( )( )( )
2
r b c a c a b a b c

q
r abc

+ − + − + −= = ,                (6) 

where a, b and c are the edge lengths. q=1 means the 

equilateral triangle, and q=0
 
means the degenerate triangle 

(zero area). As a general rule, if all triangles have q>0.5, 

the results are good. The triangles produced by our 

algorithm tend to have exceptionally good element quality. 

The head mesh has q>0.7, and the brain mesh has q>0.6. 

These results are better than a typical Delaunay 

refinement mesh with Laplacian smoothing. 

In Ref.[13], they make a comparison of several 

algorithms, which indicates that the traditional marching 

cube method takes 3 130.5 s on surface reconstruction, 

while our method spends an average of 926 s, which is 

just longer than the time of vector based approach (527 s). 

Considering simplicity and efficiency evaluation, our 

approach is a good solution with acceptable time. 

We show our method in detail to construct the brain 3D 

model from MR images. We propose a mesh algorithm 

for MR image 3D surface reconstruction with preserving 

feature points, and the diagonal length is regarded as the 

heuristic information to optimize the shape of triangle. The 

results demonstrate the mesh quality and effectiveness on 

the brain surface reconstruction. The mesh algorithm is 

much simpler than other algorithms because the process is 

simplified to the problem of linking adjacent contours of 

MR image. Moreover, our technique typically produces 

meshes with very high quality. On the execution time, the 

algorithm can be further optimized to improve efficiency, 

which will be the focus of our next work.  
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